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1. We shall consider the two-dimensional unsteady motion of a poly- 
tropic gas with the equation of state p = a2(S)p. where p is the pres- 
sure, p the density, S the entropy and y the adiabatic exponent. 

Let t = t/ (dpfcp) be the sound speed, and IQ, ug the components of the 
velocity vector u. 

In [ 1 1 was studied isentropic flow having straight-line character- 
istics in the x1x2&space 

The quantities Al 
assumed to depend on 
tion of the characteristics. 

and $, and also the functions ul and u2, are 
two parameters al and a2, which determine the posi- 

. 

In what follows we shall study mainly flows which are not simple waves 
or conical flows; by virtue of the theorems established in [ 1 ‘f , such 
flows will be potential flows for y f 2 (for y = 2. rotational flows may 
also have straight characteristics). In this paper we shall give a method 
of finding the flow of a gas behind shock waves of constant strength 
moving into a uniform region, for a class of sufficiently smooth (in 
some sense) shock fronts, when the flow behind the shock fronts has 
straight characteristics. 

For simplicity we shall consider an isothermal gas, though all the 
arguments may be carried over to the adiabatic case with arbitrary y, 

for which we merely state a few results, 

In the adiabatic case, the constancy of the normal velocity of the 
shock front follows at once from the Hugoniot conditions as soon a8 we 
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are given a constant region ahead of the shock, and we assume isentropic 
flow behind it. In the isothermal gas, this same property is also de- 
duced from the Wugoniot conditions, in addition to the assumption that 
the flow behind the shock wave possesses straight characteristics. 

a2 

2. In the equation of state of an isothermal gas p = a2p. where 

= RT, we assume for simplicity a2 = 1 (a2 is the square of the sound 
speed, which is a constant in an isothermal gas). 

The flow of an isothermal gas with straight characteristics is de- 
scribed by the system of equations [l I 

Ai = ui + qi (i = 1, 2) 

(i- 43) (q22+ 1) + 291!7zq12 + (1 --qz2) (q11 + 1) = 0 

(1 --cl?) awla% - 2q1qa au1iacla + (I- qz2) auz/aaz = 0 

au, / i3a2 = au2 1 &xl 
xi - Ai (al, at) t = ai (i = 1,2) 

(2.1) 

(2.2) 

(2.3) 
(2.4) 
(2.5) 

Here 

(2.6) 

Equation (2.5) serves to determine the functions ui and g in the 
x1x2 t-space. 

We consider a stationary gas with ul = u2 = 0 and p = 1, into which 

the shock wave enters. The equation of the shock surface may be taken in 
the form 

as-ffctl) = 0 (2.7) 

The equation of the shock surface @(a,, a2) = 0 may be considered as 
general, insofar as a given equation of a surface F(xl, x2, t)= 0 reduces 
to it, after using supplementary conditions between ul, u2 and q as func- 
tions of aI and a2 resulting from Hugoniot’s conditions. The Hugoniot 
conditions in the case considered are written as: 

,q =- 03, ,u1=D-&, u.t=o (2.8) 

where D is the speed of the shock front and t a tangential vector to the 
shock front. 

The method of studying conditions (2.8) is analogous to the method 
applied in [ 1 1 for deriving the basic equations. With the help of 
Formulas (2.1) and (2.5). Equation (2. ‘7) and the formula 

au2 / at - f ’ aal / i3 t 
(2.9) 
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condition (2.8) may be reduced to the form 

-4, + tBi ==: 0 (i = 1, 3) 

where Ai and Bi are functions of al alone, and consequently, since t is 
arbitrary, each must be zero. Thus, we obtain four equations: 

U] + u& = 0 (2.iO) 

(p21+ f’p22) eq12 + -- 
~1 [AI (~21 + f’~22) - A2 (PII + t’,wdJ ~_ (, 

y-iiq?q 

(2.11) 

1Iz.13) 

Fin&llY, elimination of D from (2.8) gives yet another result: 

We shall prove that 1 u/ = 4 F = const along the shock front. To this 
end we calculate along the front the following: 

‘7 = \ 41 &l-j- 9; du:: 

Using (2.1) and (2.121, and also the fact that 

clui = (g! + .;; 1’) da1 

along the front 

we reduce the expression for p to the form 
.- 

Q” - U1y - Ut2 - f I/(Ul” -t_ UiL) (2Llz --!- Uiz -i_ 4) + Q (Q f--l con&) (2.15) 

Comparing (2.15) with (2.14). we see that aI2 + ax2 = F = const along 
the front, the constant Q being determined by the given 1~1 on the front, 

Thus, in the class of flows of an isothermal gas which we consider, 
shock waves can propagate only with constant speed D, and consequently 
the quantities 1~1 and g are constant along the front. 

Moreover, analysis of Equations (2.10) to (2.13) shows that the 
following relations obtain along the front: 
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Here 

F=(D-&)*, G=Gl=-+((3F +‘l/F(F+4)) 01 

c=c,+I/F(F+4)-F) (2.18) 

Formulas (2.16) provide the initial data on the shock front for Equa- 
tions (2.3) and (2.4) in the aI-a?-plane, and Formulas (2.17) give the 
initial data for Equation (2.2) in the plane of the velocity components. 
Equation (2.2) and the system (2.3), (2.4) for the functions u1 and uz 
are hyperbolic in the neighborhood of the line aI2 + ax* = F when G = G1, 
and, generally speaking, are elliptic there when C = C2. The choice of 
the sign in the formulas for u1 and u2 is fixed by the direction of pro- 
pagation of the shock wave. The shape of the front at the initial instant, 
given by the function f(a,), may be arbitrary. We observe that for 
conical flow ( A1 = ai, A, = a*) the shape of the front will not be 
arbitrary, but must be either plane or cylindrical. This follows from 
Equations (2.10) to (2.13). 

The function q, which satisfies condition (2.1’7). is uniquely deter- 
mined from the equation 

Zq’fu + 29’ - 2q’% - 4q% + 1 = 0 (a = 9 (u)* u = ZQ + c&2) (2.19) 

and from condition (2.17) for Equation (2.9). the initial conditions for 
the Cauchy problem being 

G 
9’ iu=F =ps qlu=F=21nfl+VF+4 

2 
(2.20) 

We remark further that the function 
the shock wave, but is determined only 
into a constant region. 

BY means of a velocity Potential @, 

q does not depend on the shape of 
by the speed of its propagation 

Equations (2.3) and (2.4) may be 
reduced to a single equation of the second order. 

As an example of that, we use Legendre’s transformation and introduce 
polar coordinates u1 = r cos c$. u2 = r sin & then we obtain a linear 
second-order equation for (4’ of the form 

for which 
=C > 

(2.21) 

tD” = alul + aauz - @, 
aw aw 
-=(*I, ==a2 
au1 a 
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From condition (2.16) for EpUatiOn (2.21) we set UP the following 

problem: 
aw 
ar r = 1/B = cos qpl (-cot q) -t sin vf (P-Y- cot cp)) = 4cp) 

. 
~$?plYl,=~~ =o (2.22) 

Here f’-’ represents the inverse function to f’. In the coefficients 
of Equation (2.21) the variable S$ does not enter explicitly; thus we 
may apply the method of Fourier for the solution. seeking a solution in 
the form a0 = I,&$) x (r), we obtain equations for $ and x: 

v --*=o x”-- ~,:-_)X;--h(4g’2-_)X=O (2.23) 

where X is a constant. Thus, W, may be taken in the form 

where ax are arbitrary constants. 

For some concrete gasdynamical-flow problems (when x = - k2, k integer), 
with the assumptions of the boundedness of xx(\ln for all X and suffi- 
cient smoothness of the function t(#, it is possible to justify Fourier’s 
method for Equation (2.21) in the hyperbolic case and to prove the con- 
vergence of the corresponding series. 

3. As an example, we solve the problem for an isothermal gas assu^ming 
that, at the initial instant, the shock is elliptical in shape 

(3.1) 

and the gas In front of the shock (i.e. inside the ellipse) is at rest, 
with p = 1. 

For t = 0 we have ai = xi, and it is sufficient to find the distribu- 
tion of the velocities u1 and u2 behind the shock wave at the instant 
t = 0, After that, the flow in the x1 - z2 - t space is found from Form- 
ula (2.5). ge observe that in our consideration we assume the hyper- 
bolicity of Equation (2.21) behind the shock. 

The lines x1 = 0 and x2 = 0. by symmetry, may be considered as rigid 
walls. Boundary conditions on the walls x1 = 0 and xg = 0 for the 
potential a0 are set as: 

am - =r;o 
au, u,=cJ ’ 

aw 
au =:O 2 u,=n (3.2) 
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In this case 

1 (cp) = vu2 CW.~ ‘p + b2 sin2 cp (3.3) 

solving this problem by Fourier’s method, we obtain 

h = - (21ra)2, IIL = 0, 1. 2. . 

and for the velocity potential a0 we obtain the expression 

@’ = ~0x0 (r) + f$ Szrn xsm (9 cos 2w (3.4) 

where 
m=o 

:, _ rr 
1 

so = -z s1/ 
a* COG - f +b2sin+dt A-_=$ a2 cos2 g + b2 sin2 $ cos ml dt (3.5), 

0 

i.e. coefficients are expressed as complete elliptic integrals, and 
the initial conditions for Xzn(r) follow: 

Functions x9,, are found by numerical integration of the second equa- 
tion (2.23) after determining Q by numerical integration of Equation 

(2.19). 

The dependence of functions ul and u2 on XI and x2 (t = 0) may be 
found from the relations 

aw / au, = Xl, aw / au2 = x2 (3.7 ) 

We note that the motion of the shock wave toward the center of the 
ellipse can only be considered up to the’instant t = t,, at which time 
the normals to the 
becomes broken. 

shock front begin to intersect and the shock front 

4. We consider, in conclusion, flows with straight characteristics 
and shock waves in the adiabatic case. 

These flows are described by the equations [ 1 I 

Ai = ui + cfli 9=2c,e 
i T---1 

(4.1) 

r--1 f) l(i - 0~2) ea2 + 2eleae12 + (1 - 0a2) ells + T+ (e12 + e29 + 2 = 0 
2 (4.2) 

(1 - fj12) dul / aal - 2elezaul / aa2 + (1 - ea2) au2 / aa = 0 (4.3) 
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Here 

au, J da2 = au3 J aal 

zci - Ai (a,, az) t = ci (i = 1,2) 

aYi 
0+x = iZiui~ux 

As before. we consider shock waves entering a stationary gas and shock 
fronts given by (2.7). The Hugoniot conditions in this case appear thus: 

u*t--.tl 

PI (WI--~) =-POD 

Plf Pl(Uin--)2 = PO + POD2 

WI+ -$ (urn - D)2 = wo + -$I~, u1n = r/w 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Here D is the shock speed, quantities with index 1 or 0 refer respect- 
ively to the states behind or in front of the shock, P is the enthalpy. 

Thus, if given the equation of state and pal Equations (4.7). (4.8)! 
and (4.9) represent a system for the determination of the quantities Us,,, 
p and D, which. consequently, will appear constant in this case. The 
difference from the isothermal gas lies in the fact that after giving 
the state before the shock front the shock speed will be UniquefY deter- 
mined as soon as the entropy constant (r*(S) is known. With the help of 
the expression 

WA -I- u2A2 
D = - v/ula2 = const (4.10) 

and condition (4.6), we obtain, in a manner analogous to the case of the 
isothermal gas, the following relations which are satisfied along the 
shock front: 

in which C = aleI + u2e2 = COnSt appears from condition (4.10). Seeking 
a function 8 in the form 8 = B(u,’ f az2) and letting a = u12 + az2, we 
obtain the second-order equation for the function 8 

Here 
fr--I)efe’+e~u-20’~~)-~-(~-3)Ff’~u+1=O (4.13) 

c 
6’ IU&== 2 
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and 6(F) is determined from Hugoniot conditions. Just as in the case of 
the isothermal gas, the function 6(u) is invariant with respect to the 
shape of the shock front. This problem with the initial data (4.11) for 
the potential @,(d@//a = ui) can be solved by Fourier’s method in a 
completely analogous manner to the isothermal case. 

Thus, by means of the method indicated it is possible, in the adi- 
abatic case also, to obtain exact solutions to some gasdynamical problems 
with shock waves. 

Furthermore, the method considered gives the possibility in some 
cases, both for isothermal and polytropic gases, of solving the problem 
of the motion of a curved piston which drives a shock wave in front of 
it, under the assumptions of sufficient smoothness (in some sense) of the 
piston shape at the initial instant. Thus. we can obtain some general- 
ization to the curved piston of the solution of L.I. Sedov for a constant- 
speed cylindrical piston. These questions will be considered in subsequent 
papers. The exact solutions obtained, moreover, may be used as criteria 
of accuracy for numerical methods. 

In conclusion, we thank N.N. Ianenko for valuable critical remarks, 
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